Index
- Guessing Game
- Common Programming Concepts
- Understanding Ownership
- Using Structs
- Enums and Pattern Matching
- Managing Growing Projects with Packages, Crates, and Modules
- Defining Modules to Control Scope and Privacy
- Paths for Referring to an Item in the Module Tree
- Bringing Paths into Scope with the use Keyword
- Separating Modules into Different Files
- Common Collections
- Error Handling
- Generic Types, Traits, and Lifetimes
- Writing Automated Tests
- Object Oriented Programming
- Adding dependancies
- Option Take
- RefCell
- mem
- Data Structure
- Recipe
- Semi colon
- Calling rust from python
- Default
- Crytocurrency With rust
- Function chaining
- Question Mark Operator
- Tests with println
- lib and bin
- Append vector to hash map
- Random Number
- uuid4
- uwrap and option
- Blockchain with Rust
- Near Protocol
- Actix-web
An Example Program Using Structs
An Example Program Using Structsfn main() {
let width1 = 30;
let height1 = 50;
println!(
"The area of the rectangle is {} square pixels.",
area(width1, height1)
);
}
fn area(width: u32, height: u32) -> u32 {
width * height
}
let width1 = 30;
let height1 = 50;
println!(
"The area of the rectangle is {} square pixels.",
area(width1, height1)
);
}
fn area(width: u32, height: u32) -> u32 {
width * height
}
The area of the rectangle is 1500 square pixels.
Refactoring with Tuples
fn main() {
let rect1 = (30, 50);
println!(
"The area of the rectangle is {} square pixels.",
area(rect1)
);
}
fn area(dimensions: (u32, u32)) -> u32 {
dimensions.0 * dimensions.1
}
let rect1 = (30, 50);
println!(
"The area of the rectangle is {} square pixels.",
area(rect1)
);
}
fn area(dimensions: (u32, u32)) -> u32 {
dimensions.0 * dimensions.1
}
Refactoring with Structs: Adding More Meaning
struct Rectangle {
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!(
"The area of the rectangle is {} square pixels.",
area(&rect1)
);
}
fn area(rectangle: &Rectangle) -> u32 {
rectangle.width * rectangle.height
}
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!(
"The area of the rectangle is {} square pixels.",
area(&rect1)
);
}
fn area(rectangle: &Rectangle) -> u32 {
rectangle.width * rectangle.height
}
This too works without pointer:
struct Rectangle {
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!(
"The area of the rectangle is {} square pixels.",
area(rect1)
);
}
fn area(rectangle: Rectangle) -> u32 {
rectangle.width * rectangle.height
}
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!(
"The area of the rectangle is {} square pixels.",
area(rect1)
);
}
fn area(rectangle: Rectangle) -> u32 {
rectangle.width * rectangle.height
}
But rect1 is inaccessible after area(rect1) due to moving.
Printing struc
Error code:
struct Rectangle {
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!("rect1 is {}", rect1);
}
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!("rect1 is {}", rect1);
}
Rust does include functionality to print out debugging information, but we have to explicitly opt in to make that functionality available for our struct. To do that, we add the annotation #[derive(Debug)] just before the struct definition
#[derive(Debug)] //`derive` may only be applied to structs, enums and unions
struct Rectangle {
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!("rect1 is {:?}", rect1); // rect1 is Rectangle { width: 30, height: 50 }
}
struct Rectangle {
width: u32,
height: u32,
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
println!("rect1 is {:?}", rect1); // rect1 is Rectangle { width: 30, height: 50 }
}