Index
- Guessing Game
- Common Programming Concepts
- Understanding Ownership
- Using Structs
- Enums and Pattern Matching
- Managing Growing Projects with Packages, Crates, and Modules
- Defining Modules to Control Scope and Privacy
- Paths for Referring to an Item in the Module Tree
- Bringing Paths into Scope with the use Keyword
- Separating Modules into Different Files
- Common Collections
- Error Handling
- Generic Types, Traits, and Lifetimes
- Writing Automated Tests
- Object Oriented Programming
- Adding dependancies
- Option Take
- RefCell
- mem
- Data Structure
- Recipe
- Semi colon
- Calling rust from python
- Default
- Crytocurrency With rust
- Function chaining
- Question Mark Operator
- Tests with println
- lib and bin
- Append vector to hash map
- Random Number
- uuid4
- uwrap and option
- Blockchain with Rust
- Near Protocol
- Actix-web
Object Oriented Programming
Encapsulation that Hides Implementation DetailsAnother aspect commonly associated with OOP is the idea of encapsulation, which means that the implementation details of an object aren’t accessible to code using that object. Therefore, the only way to interact with an object is through its public API; code using the object shouldn’t be able to reach into the object’s internals and change data or behavior directly.
pub struct AveragedCollection {
list: Vec<i32>,
average: f64,
}
list: Vec<i32>,
average: f64,
}
An
AveragedCollection
struct that maintains a list of integers and the average of the items in the collection.The struct is marked
pub
so that other code can use it, but the fields within the struct remain private. This is important in this case because we want to ensure that whenever a value is added or removed from the list, the average is also updated. We do this by implementing add
, remove
, and average
methods on the struct.Filename: src/lib.rs
#![allow(unused_variables)]
fn main() {
pub struct AveragedCollection {
list: Vec<i32>,
average: f64,
}
impl AveragedCollection {
pub fn add(&mut self, value: i32) {
self.list.push(value);
self.update_average();
}
pub fn remove(&mut self) -> Option<i32> {
let result = self.list.pop();
match result {
Some(value) => {
self.update_average();
Some(value)
}
None => None,
}
}
pub fn average(&self) -> f64 {
self.average
}
fn update_average(&mut self) {
let total: i32 = self.list.iter().sum();
self.average = total as f64 / self.list.len() as f64;
}
}
}
We leave the
list
and average
fields private so there is no way for external code to add or remove items to the list
field directly; otherwise, the average
field might become out of sync when the list
changes. The average
method returns the value in the average
field, allowing external code to read the average
but not modify it.If encapsulation is a required aspect for a language to be considered object oriented, then Rust meets that requirement. The option to use
pub
or not for different parts of code enables encapsulation of implementation details.Inheritance as a Type System and as Code Sharing
Inheritance is a mechanism whereby an object can inherit from another object’s definition, thus gaining the parent object’s data and behavior without you having to define them again.
If a language must have inheritance to be an object-oriented language, then Rust is not one. There is no way to define a struct that inherits the parent struct’s fields and method implementations. However, if you’re used to having inheritance in your programming toolbox, you can use other solutions in Rust, depending on your reason for reaching for inheritance in the first place.
Polymorphism
To many people, polymorphism is synonymous with inheritance. But it’s actually a more general concept that refers to code that can work with data of multiple types. For inheritance, those types are generally subclasses.
Rust instead uses generics to abstract over different possible types and trait bounds to impose constraints on what those types must provide. This is sometimes called bounded parametric polymorphism.
Rust takes a different approach, using trait objects instead of inheritance. Let’s look at how trait objects enable polymorphism in Rust.
Using Trait Objects That Allow for Values of Different Types