Index
- Lesson 1: CryptoZombies
- Chapter 2 Contracts
- Chapter 3: State Variables & Integers
- Chapter 4: Math Operations
- Chapter 5: Structs
- Chapter 6: Arrays
- Chapter 7: Function Declarations
- Chapter 8: Working With Structs and Arrays
- Chapter 9: Private / Public Functions
- Chapter 10: More on Functions
- Chapter 11: Keccak256 and Typecasting
- Chapter 12: Putting It Together
- Chapter 13: Events
- Chapter 14: Web3.js
- Lesson 2: Zombies Attack Their Victims
- Chapter 2: Mappings and Addresses
- Chapter 3: Msg.sender
- Chapter 4: Require
- Chapter 5: Inheritance
- Chapter 6: Import
- Chapter 7: Storage vs Memory
- Chapter 8: Zombie DNA
- Chapter 9: More on Function Visibility
- Chapter 10: What Do Zombies Eat?
- Chapter 11: Using an Interface
- Chapter 12: Handling Multiple Return Values
- Chapter 13: Bonus: Kitty Genes
- Chapter 14: Wrapping It Up
- Lesson 3: Advanced Solidity Concepts
- Chapter 2: Ownable Contracts
- Chapter 3: onlyOwner Function Modifier
- Chapter 4: Gas
- Chapter 5: Time Units
- Chapter 6: Zombie Cooldowns
- Chapter 7: Public Functions & Security
- Chapter 8: More on Function Modifiers
- Chapter 9: Zombie Modifiers
- Chapter 10: Saving Gas With 'View' Functions
- Chapter 11: Storage is Expensive
- Chapter 12: For Loops
- Chapter 13: Wrapping It Up
- Lesson 4: Zombie Battle System
- Chapter 1: Payable
- Chapter 2: Withdraws
- Chapter 3: Zombie Battles
- Chapter 4: Random Numbers
- Chapter 5: Zombie Fightin'
- Chapter 6: Refactoring Common Logic
- Chapter 7: More Refactoring
- Chapter 8: Back to Attack!
- Chapter 9: Zombie Wins and Losses
- Chapter 10: Zombie Victory 😄
- Chapter 11: Zombie Loss 😞
- Lesson 5: ERC721 & Crypto-Collectibles
- Chapter 1: Tokens on Ethereum
- Chapter 2: ERC721 Standard, Multiple Inheritance
- Chapter 3: balanceOf & ownerOf
- Chapter 4: Refactoring
- Chapter 5: ERC721: Transfer Logic
- Chapter 6: ERC721: Transfer Cont'd
- Chapter 7: ERC721: Approve
- Chapter 8: ERC721: Approve
- Chapter 9: Preventing Overflows
- Chapter 10: SafeMath Part 2
- Chapter 11: SafeMath Part 3
- Chapter 12: SafeMath Part 4
- Chapter 13: Comments
- Chapter 14: Wrapping It Up
- App Front-ends & Web3.js
- Chapter 1: Intro to Web3.js
- Chapter 2: Web3 Providers
- Chapter 3: Talking to Contracts
- Chapter 4: Calling Contract Functions
- Chapter 5: Metamask & Accounts
- Chapter 6: Displaying our Zombie Army
- Chapter 7: Sending Transactions
- Chapter 8: Calling Payable Functions
- Chapter 9: Subscribing to Events
- Chapter 10: Wrapping It Up
Chapter 9: Zombie Wins and Losses
Chapter 9: Zombie Wins and Losses
For our zombie game, we're going to want to keep track of how many battles our zombies have won and lost. That way we can maintain a "zombie leaderboard" in our game state.
We could store this data in a number of ways in our DApp — as individual mappings, as leaderboard Struct, or in the
Zombie
struct itself.Each has its own benefits and tradeoffs depending on how we intend on interacting with the data. In this tutorial, we're going to store the stats on our
Zombie
struct for simplicity, and call them winCount
and lossCount
.So let's jump back to
zombiefactory.sol
, and add these properties to our Zombie
struct.Put it to the test
1. Modify our
Zombie
struct to have 2 more properties:a.
winCount
, a uint16
b.
lossCount
, also a uint16
Note: Remember, since we can pack
uint
s inside structs, we want to use the smallest uint
s we can get away with. A uint8
is too small, since 2^8 = 256 — if our zombies attacked once per day, they could overflow this within a year. But 2^16 is 65536 — so unless a user wins or loses every day for 179 years straight, we should be safe here.2. Now that we have new properties on our
Zombie
struct, we need to change our function definition in _createZombie()
.Change the zombie creation definition so it creates each new zombie with
0
wins and 0
losses.pragma solidity ^0.4.25;
import "./ownable.sol";
contract ZombieFactory is Ownable {
event NewZombie(uint zombieId, string name, uint dna);
uint dnaDigits = 16;
uint dnaModulus = 10 ** dnaDigits;
uint cooldownTime = 1 days;
struct Zombie {
string name;
uint dna;
uint32 level;
uint32 readyTime;
// 1. Add new properties here
uint16 winCount;
uint16 lossCount;
}
Zombie[] public zombies;
mapping (uint => address) public zombieToOwner;
mapping (address => uint) ownerZombieCount;
function _createZombie(string _name, uint _dna) internal {
// 2. Modify new zombie creation here:
uint id = zombies.push(Zombie(_name, _dna, 1, uint32(now + cooldownTime), 0, 0)) - 1;
zombieToOwner[id] = msg.sender;
ownerZombieCount[msg.sender]++;
emit NewZombie(id, _name, _dna);
}
function _generateRandomDna(string _str) private view returns (uint) {
uint rand = uint(keccak256(abi.encodePacked(_str)));
return rand % dnaModulus;
}
function createRandomZombie(string _name) public {
require(ownerZombieCount[msg.sender] == 0);
uint randDna = _generateRandomDna(_name);
randDna = randDna - randDna % 100;
_createZombie(_name, randDna);
}
}
import "./ownable.sol";
contract ZombieFactory is Ownable {
event NewZombie(uint zombieId, string name, uint dna);
uint dnaDigits = 16;
uint dnaModulus = 10 ** dnaDigits;
uint cooldownTime = 1 days;
struct Zombie {
string name;
uint dna;
uint32 level;
uint32 readyTime;
// 1. Add new properties here
uint16 winCount;
uint16 lossCount;
}
Zombie[] public zombies;
mapping (uint => address) public zombieToOwner;
mapping (address => uint) ownerZombieCount;
function _createZombie(string _name, uint _dna) internal {
// 2. Modify new zombie creation here:
uint id = zombies.push(Zombie(_name, _dna, 1, uint32(now + cooldownTime), 0, 0)) - 1;
zombieToOwner[id] = msg.sender;
ownerZombieCount[msg.sender]++;
emit NewZombie(id, _name, _dna);
}
function _generateRandomDna(string _str) private view returns (uint) {
uint rand = uint(keccak256(abi.encodePacked(_str)));
return rand % dnaModulus;
}
function createRandomZombie(string _name) public {
require(ownerZombieCount[msg.sender] == 0);
uint randDna = _generateRandomDna(_name);
randDna = randDna - randDna % 100;
_createZombie(_name, randDna);
}
}