Index
- Lesson 1: CryptoZombies
- Chapter 2 Contracts
- Chapter 3: State Variables & Integers
- Chapter 4: Math Operations
- Chapter 5: Structs
- Chapter 6: Arrays
- Chapter 7: Function Declarations
- Chapter 8: Working With Structs and Arrays
- Chapter 9: Private / Public Functions
- Chapter 10: More on Functions
- Chapter 11: Keccak256 and Typecasting
- Chapter 12: Putting It Together
- Chapter 13: Events
- Chapter 14: Web3.js
- Lesson 2: Zombies Attack Their Victims
- Chapter 2: Mappings and Addresses
- Chapter 3: Msg.sender
- Chapter 4: Require
- Chapter 5: Inheritance
- Chapter 6: Import
- Chapter 7: Storage vs Memory
- Chapter 8: Zombie DNA
- Chapter 9: More on Function Visibility
- Chapter 10: What Do Zombies Eat?
- Chapter 11: Using an Interface
- Chapter 12: Handling Multiple Return Values
- Chapter 13: Bonus: Kitty Genes
- Chapter 14: Wrapping It Up
- Lesson 3: Advanced Solidity Concepts
- Chapter 2: Ownable Contracts
- Chapter 3: onlyOwner Function Modifier
- Chapter 4: Gas
- Chapter 5: Time Units
- Chapter 6: Zombie Cooldowns
- Chapter 7: Public Functions & Security
- Chapter 8: More on Function Modifiers
- Chapter 9: Zombie Modifiers
- Chapter 10: Saving Gas With 'View' Functions
- Chapter 11: Storage is Expensive
- Chapter 12: For Loops
- Chapter 13: Wrapping It Up
- Lesson 4: Zombie Battle System
- Chapter 1: Payable
- Chapter 2: Withdraws
- Chapter 3: Zombie Battles
- Chapter 4: Random Numbers
- Chapter 5: Zombie Fightin'
- Chapter 6: Refactoring Common Logic
- Chapter 7: More Refactoring
- Chapter 8: Back to Attack!
- Chapter 9: Zombie Wins and Losses
- Chapter 10: Zombie Victory 😄
- Chapter 11: Zombie Loss 😞
- Lesson 5: ERC721 & Crypto-Collectibles
- Chapter 1: Tokens on Ethereum
- Chapter 2: ERC721 Standard, Multiple Inheritance
- Chapter 3: balanceOf & ownerOf
- Chapter 4: Refactoring
- Chapter 5: ERC721: Transfer Logic
- Chapter 6: ERC721: Transfer Cont'd
- Chapter 7: ERC721: Approve
- Chapter 8: ERC721: Approve
- Chapter 9: Preventing Overflows
- Chapter 10: SafeMath Part 2
- Chapter 11: SafeMath Part 3
- Chapter 12: SafeMath Part 4
- Chapter 13: Comments
- Chapter 14: Wrapping It Up
- App Front-ends & Web3.js
- Chapter 1: Intro to Web3.js
- Chapter 2: Web3 Providers
- Chapter 3: Talking to Contracts
- Chapter 4: Calling Contract Functions
- Chapter 5: Metamask & Accounts
- Chapter 6: Displaying our Zombie Army
- Chapter 7: Sending Transactions
- Chapter 8: Calling Payable Functions
- Chapter 9: Subscribing to Events
- Chapter 10: Wrapping It Up
Chapter 6: Arrays
Chapter 6: Arrays
When you want a collection of something, you can use an array. There are two types of arrays in Solidity: fixed arrays and dynamic arrays:
// Array with a fixed length of 2 elements:
uint[2] fixedArray;
// another fixed Array, can contain 5 strings:
string[5] stringArray;
// a dynamic Array - has no fixed size, can keep growing:
uint[] dynamicArray;
uint[2] fixedArray;
// another fixed Array, can contain 5 strings:
string[5] stringArray;
// a dynamic Array - has no fixed size, can keep growing:
uint[] dynamicArray;
You can also create an array of structs. Using the previous chapter's Person
struct:Person[] people; // dynamic Array, we can keep adding to it
Remember that state variables are stored permanently in the blockchain? So creating a dynamic array of structs like this can be useful for storing structured data in your contract, kind of like a database.Public Arrays
You can declare an array as
public
, and Solidity will automatically create a gettermethod for it. The syntax looks like:Person[] public people;
Other contracts would then be able to read from, but not write to, this array. So this is a useful pattern for storing public data in your contract.Put it to the test
We're going to want to store an army of zombies in our app. And we're going to want to show off all our zombies to other apps, so we'll want it to be public.
1. Create a public array of
Zombie
structs, and name it zombies
.pragma solidity ^0.4.25;
contract ZombieFactory {
uint dnaDigits = 16;
uint dnaModulus = 10 ** dnaDigits;
struct Zombie {
string name;
uint dna;
}
Zombie[] public zombies;
}
contract ZombieFactory {
uint dnaDigits = 16;
uint dnaModulus = 10 ** dnaDigits;
struct Zombie {
string name;
uint dna;
}
Zombie[] public zombies;
}