Rules to Answer	Rules to Answer	Primitive Data Types	Primitive Data Types
Accurate answer supported by evidence, and reasoning links answer and evidence. Response is specific and detailed. Presence of keywords and scientific terminology.	Refer content if unable to recall after 15-30sec of trying, then again retrieve from memory without help.	Free Recall	Data types that are defined by the sytem. e.g. int, float, double, bool
Asymptotic Notation Elaborate	Asymptotic Notation or Algorithm's growth rate are languages that allow us to analyze an algorithm's running time by identifying its behavior as the input size for the algorithm increases.	Big-O (O) vs Big-Omega (Ω) Main idea	Big-O Asymptotic Notation for the worst case, or ceiling of growth for a given function. Analogy: At most
Big-O	Big-O	Big-O	Big-O Examples
Provides us with an asymptotic upper bound for the growth rate of runtime of an algorithm	Say f(n) is your algorithm runtime, and g(n) is an arbitary time complexity you are trying ot relate to your algorithm	f(n) is $O(g(n))$, if for some constants c (c>0) and n ₀ , f(n) <= c*g(n) for every input size n(n>n ₀	big-O Examples
Big-O Examples $f(n) = 3\log n + 100$ $g(n) = \log n$	Big-Omega Best case Floor growth rate Asymptotic lower bound Analogy: At least	Big O and Big-Omega Give the mathematical defination	Small-o and Small-omega (ω) Elaborate
Small-o and Small-omega Both are not asymptotically tight (no equal to sign)	Theta Θ Explain	Theta Asymptotical tight bound $c1^*g(n) < f(n) < c2^*g(n)$	Recurrence Main idea
Recurrence An equation that recursively defines a sequence once one or more initial terms are given: each further term of the sequence or array is defined as a function of the preceding terms.	Recursion vs Recurrence Explain	Recursion vs Recurrence A recurrence relation uses recursion to create a sequence. Recursion is not limited to generation of sequences.	Recursion Recursion is the repeated use of a procedure or action
Recurrence	Recurrence	Recurrence	Binary Search
In fact, a recurrence relation uses recursion to define a sequence.	This sequence is built in such a way that each term is defined as a combination of previous terms. The generation of such a sequence is a requirement in the definition	Recurrence is analyzed by telescoping	Main Idea
Binary Search	Binary Search	Binary Search	Binary Search
Search algorithm that finds the position of a target value within a sorted array	Elements are already sorted in ascending order Divide and Conquer algorithm is used	Element x is either in the left half of the array or in the right half or not there at all	Compare x to middle element k, x > k (x not in left half), $x < k$ (x not in right half)

Running time of Binary Search Explain	Running time of Binary Search lg ₂ N binary search runs in O(lgN)	One word answer In computer science you use lg_2N or $lg_{10}N$	In computer science you use lg_2N or $lg_{10}N$ lg_2N
Merging	Merging	Merge Sort	Merging
Elaborate	Merging is not a divide and conquer algorithm, but part of mergesort algorithm	Merge Sort is a divide and conquer algorithm	Take two sorted arrays of numbers and make a single array which is sorted of all of those numbers
Merge Sort	Merge Sort	Mergesort	Run time for mergesort
Type of Algorithm	Explain the complete algorithm	First divide the list into smallest unit (1 element), then compare each element with the adjacent list to sort and merge two adjacent lists. Finally all the elements are sorted and merged.	
Due times for more set		Lasantian santus Managarat	
Run time for mergesort O(n*lgn)	Insertion sort vs Mergesort Which one is better and why?	Insertion sort vs Mergesort Insertion sort is $O(n^2)$. Mergesort is $O(n^*logn)$. So, merge-sort is a superior algorithm in terms of its running time on large datasets.	Algorithm runtime Insertion sort and Bubble sort
Insertion and bubble sort Runtime]		

Both has Best: Ω(n) Worst: O(n²)